GESCHÄFTSFÜHRER:

DR.-ING. ULRICH WINKELVOß BERATENDER INGENIEUR FÜR GEOTECHNIK, FACHINGENIEUR FÜR BAUTENSCHUTZ, FACHINGENIEUR FÜR ZERSTÖRUNGSFREIE PRÜF- UND MESSTECHNIK, ÖFFENTLICH BESTELLTER UND VEREIDIGTER SACHVERSTÄNDIGER FÜR SPEZIALTIEFBAU UND BAUGRUNDBEDINGTE SCHÄDEN IM HOCHBAU, VERANTWORTLICHER SACHVERSTÄNDIGER (PRÜFSTATIKER) FÜR ERD- UND GRUNDBAU

MITARBEITER:

DIPL.-GEOGR. JÜRGEN KUPRAT, SACHVERSTÄNDIGER FÜR BAUGRUNDUNTERSUCHUNGEN,

BAUGRÜNDUNGEN, KONTAMINIERUNGEN UND GEOTHERMIE

Baugrund-Institut Winkelvoß GmbH Amberger Straße 5, 93059 Regensburg

Stadt Nabburg Oberer Markt 16 92507 Nabburg

Datei Ihr Zeichen 211025_Nabburg_Baderfeld_RRB

Ihr Schreiben vom

Unser Zeichen uw jw 21 10 25

Regensburg 10.03.2022

Nabburg, Baderfeld II: geplantes Regenrückhaltebecken Standsicherheitsnachweis zur BAB A 93

1. Vorgang

Auf der Grundlage unseres üblichen Verzeichnisses der Preise und Leistungen erhielten wir den Auftrag zur Führung eines Standsicherheitsnachweises für die Böschung eines geplanten Regenrückhaltebeckens (RRB) zur tieferliegenden Bundesautobahn A93.

Hierzu wurden zunächst am 09.02.2022 zwei Schürfe im Bereich des RRB aufgekoffert, um die anstehenden Bodenverhältnisse zu Erkunden.

Die Schürfe wurden anschließend über einen Zeitraum von 7 Tagen offen gehalten, um Grundwasserstände zu protokollieren.

Wir können folgende Feststellungen zu den Bodenverhältnissen und der Standsicherheit darlegen:

2. Feststellungen

Die am 09.02.2022 aufgekofferten Schürfe Sch 1 und Sch 2 weisen ein ähnliches Bodenprofil auf.

Bei Schurf 1 steht nach einem 0,3 m mächtigen Mutterboden zunächst ein schwach sandiger, schluffiger Kies an. Darunter folgt ab -1,4 m, bis zur Endteufe des Schurfes bei -4,5 m, ein stark schluffiger, schwach toniger Sand, im unteren Profilbereich mit zunehmendem Kiesgehalt.

Bei Schurf 2 steht nach 0,3 m Mutterboden ebenfalls ein sandiger, schluffiger Kies bis auf eine Tiefe von 2,1 m an. Darunter folgt, bis zur Endteufe des Schurfes in - 4,5 m, ein schwach sandiger, schwach kiesiger Schluff.

Grundwasser wurde bis zur Endteufe der Schürfe nicht angetroffen. Bereichsweise ist schwacher Zutritt von Schichtenwasser aus den Kiesen oberhalb der bindigen Schichten zu beobachten.

Nach Ende des Beobachtungszeitraumes von 7 Tagen ist ein Wasserspiegel von ca. 0,5 m in den Schürfen festzustellen.

Die Lage der Schürfe ist in Anlage 1 dargestellt. Die Schürfprofile sind als Anlage 2 dargestellt.

3. Standsicherheitsberechnung

Aus den oben genannten Felddaten und den uns vom Ingenieurbüro Weiss übersandten planerischen Unterlagen lässt sich ein Modell des Geländeverlaufes mit zugehörigem stratigraphischem Bodenaufbau erstellen.

Die Autobahn A93 liegt im zu untersuchenden Bereich auf einer Höhenkote von 372,29 müNN, die Sohle des Straßengrabens liegt auf 371,67 m üNN.

Die Sohle des Straßengrabens wird daher als ungünstigster Fall gewertet und als Böschungssohle für die Standsicherheitsberechnung verwendet.

Die jetztige Geländehöhe im Bereich des RRB liegt auf 373,4 müNN, die Sohle des geplanten RRB auf 370,80 müNN.

Anhand des gegebenen Schnittes zeigt sich, dass die Sohle des RRB unter der Höhenkote der A93 liegt.

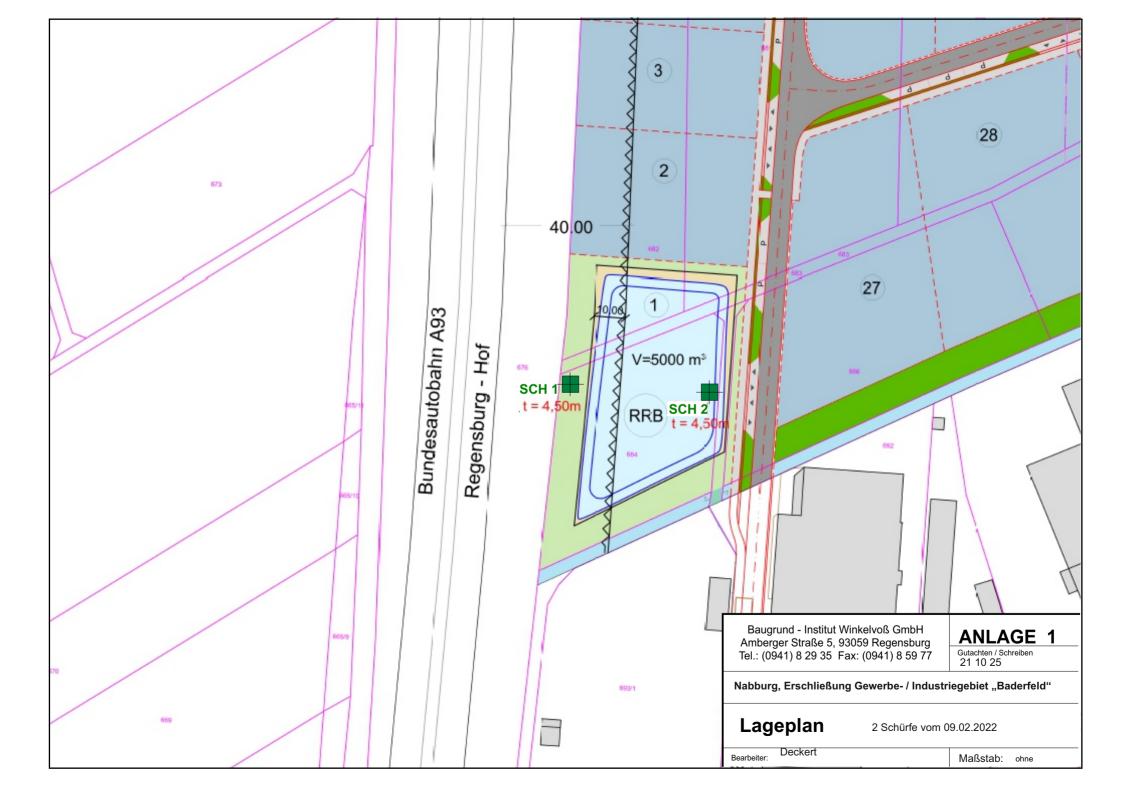
Dieses Modell dient anschließend der Standsicherheitsberechnung nach Eurocode 7 und DIN 1054:2010.

Die Ergebnisse der Berechnungen sind als Anlage 3 beigefügt.

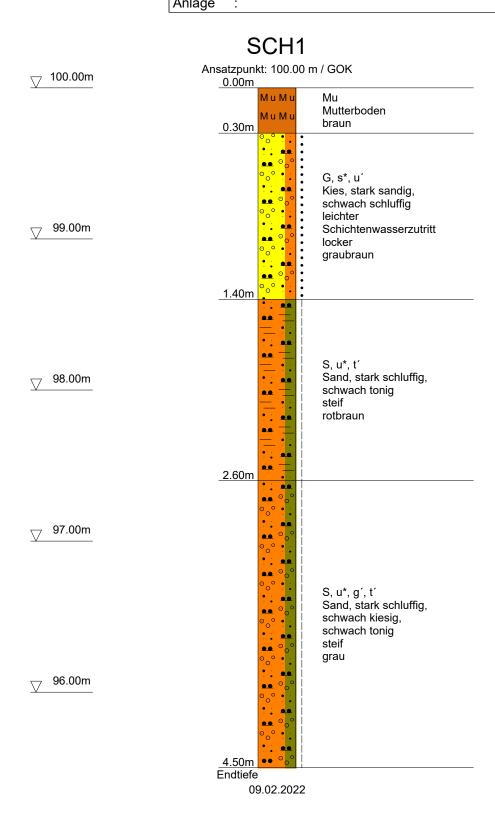
Es zeigt sich, dass im Lastfall "Becken leer" eine ausreichende Sicherheit Ed/Rd von 0,22/1.0 erreicht wird.

Eine Überprüfung für den Lastfall "Becken voll" ergab eine ausreichende Standsicherheit Ed/Rd von 0,30/1,0.

Somit kann festgestellt werden, dass die Böschung des RRB Baderfeld zur BAB A93 in jedem maßgebenden Lastfall ausreichend standsicher ist.

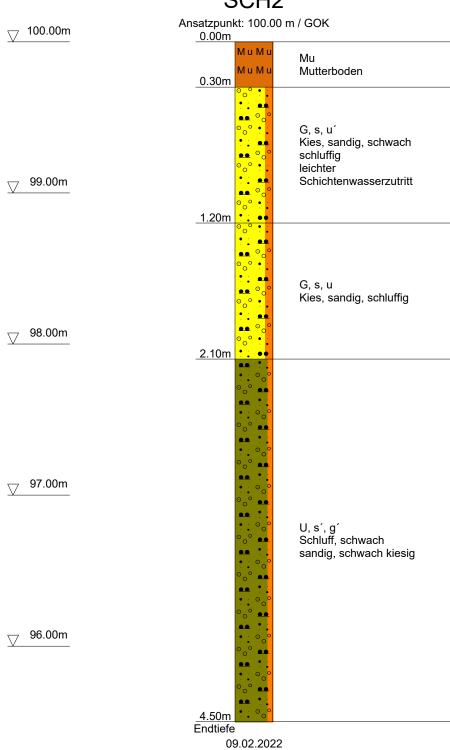

Weitere Maßnahmen sind aus unserer Sicht nicht erforderlich.

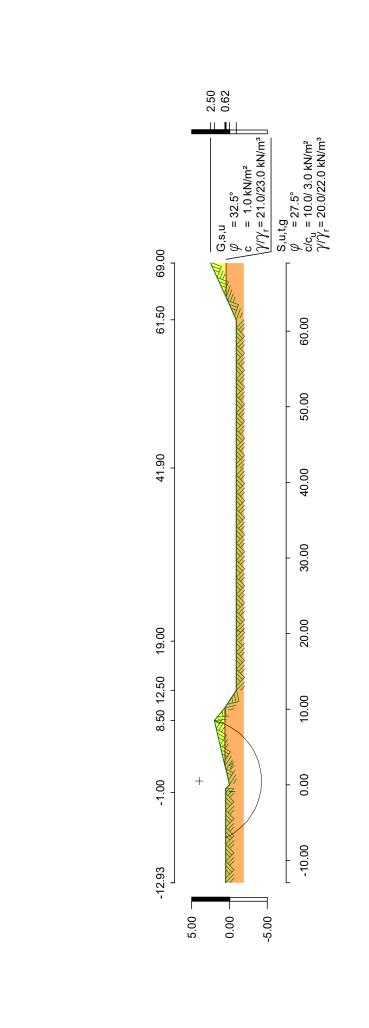
BAUGRUND INSTITUT WINKELVOSS GMBH Amberger Straße 5 93039 Regensburg TFon (0941) 8 29 35 TFax (0941) 8 59 77


Jürgen Kuprat, Dipl.Geogr. (Univ.)

Anlagen:

- Lageplan
 Schürfprofile
- 3) Standsicherheitsberechnungen




Baugrund-Institut Winkelvoss	Projekt : Nabburg, Erschließung GE/GI Baderfeld
Amberger Straße 5	Projektnr.: 21 10 25
93059 Regensburg	Datum : 09.02.2022
Tel. (0941) 82935 Fax: (0941) 859 77	Maßstab : 1: 25
	Anlage ·

Baugrund-Institut Winkelvoss	Projekt : Nabburg, Erschließung GE/GI Baderfeld
Amberger Straße 5	Projektnr.: 21 10 25
93059 Regensburg	Datum : 09.02.2022
Tel. (0941) 82935 Fax: (0941) 859 77	Maßstab: 1:25
	Anlage :

_		1: 500
Seite	System	Maßstab :

8.49
/ersion
ung/Win \
-Böschu
9
Programm

	Seite	2	
Programm DC-Böschung/Win Version 8.49			

 $Eingabe datei: C: \label{loc-Grundbaustatik} Daten \\$ 211025_Nabburg_Baderfeld_RRB.dbb

Berechnung nach: (Eurocode 7) und DIN 1054:2010

Nachweis nach DIN 4084:2009

Berechnung mit Nachweisverfahren 3

Kombination mit Teilsicherheitsbeiwerten der Gruppen A2 + M2 + R3

Schichtdaten G,s,u S,u,t,g Innere Reibung cal φ' [Grad] 32.50 27.50 Kohāsion cal c' [KN/m²] 1.0 10.0 Kohāsion undrainiert cu [KN/m²] 0.0 3.0 Wichte Boden [KN/m³] 21.0 20.0 Wichte Boden [KN/m³] 23.0 22.0 Wichte unter Auftrieb [KN/m³] 23.0 22.0 Wichte unter Auftrieb KN/m³] 11.0 10.0 10.0 Geländeverlauf und Schichten X [m]	Kombinatio	on mit Teilsi	cherheitsbe	eiwerter	n der Gru	ppen A2 + N	M2 + R3			
X [m]	Innere Reil Kohäsion o Kohäsion o Wichte Bo Wichte wa	bung cal φ' cal c' undrainiert d den ssergesättiç	[kN/m²] cu [kN/m²] [kN/m³] gt [kN/m³]		2	32.50 1.0 0.0 21.0 23.0		27.50 10.0 3.0 20.0 22.0		
2.01 2.01 2.48 2.48 8.50 10.20 12.50 19.00 20.14 41.90 61.50 64.52 69.00 2 Gelände 0.50 0.50 0.50 0.47 0.00 0.47 0.47 0.58 0.58 2.00 0.62 -0.90 -0.90 -0.90 -0.90 -0.90 0.47 2.50 2 Schicht G,s,u 0.50 0.50 0.50 0.47 0.00 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 -0.90 -0.90 -0.90 0.47 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 0.47 0.47 2 Schicht S,u,t,g -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000.00 -1000	Geländeve	erlauf und	Schichten							
z Gelände 10.20 12.50 19.00 20.14 41.90 61.50 64.52 69.00	x [m]			-1	12.93	-1.00	-0.	.50	-0.47	0.00
Z Gelände					2.01	2.01	2.	.48	2.48	8.50
z Gelände 0.50 0.50 0.50 0.50 0.50 0.47 0.00 0.47 0.47 0.47 0.58 0.58 0.58 0.62 0.62 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9				1	10.20	12.50	19.	.00	20.14	41.90
Z Schicht G,s,u 0.47 0.47 0.58 0.58 2.00 -0.9				6	31.50	64.52	69.	.00		
Z Schicht G,s,u 0.62 -0.90 0.47 2.50 -0.90 0.47 0.50 0.50 0.50 0.50 0.47 0.00 0.47 0.58 0.58 0.61 0.62 -0.90 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 0.47 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 0.47 0.47 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.4	z Gelände				0.50	0.50	0.	.50	0.47	0.00
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					0.47	0.47	0.	.58	0.58	2.00
Z Schicht G,s,u 0.50 0.50 0.50 0.47 0.00 0.47 0.47 0.58 0.58 0.61 0.62 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -1000.00					0.62	-0.90	-0.	.90	-0.90	-0.90
$ z \; \text{Schicht} \\ \textbf{z} \; \text{Schicht} \\ \textbf{S,u,t,g} \; \begin{matrix} 0.47 & 0.47 & 0.58 & 0.58 & 0.61 \\ 0.62 & -0.90 & -0.90 & -0.90 & -0.90 \\ -0.90 & 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47 & 0.47 \\ 0.47 & 0.47 \\ 0.47 & 0.47 \end{matrix} \\ \begin{matrix} 0.47 & 0.47 & 0.47 \\ 0.47$					-0.90	0.47	2.	.50		
Z Schicht S,u,t,g -1000.00 -1	z Schicht		G,s,u		0.50	0.50	0.	.50	0.47	0.00
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					0.47	0.47	0.	.58	0.58	0.61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.62	-0.90	-0.	.90	-0.90	-0.90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-0.90	0.47	0.	.47		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	z Schicht		S,u,t,g	-100	00.00	-1000.00	-1000	.00	-1000.00	-1000.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-100	00.00	-1000.00	-1000	.00	-1000.00	-1000.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-100	00.00	-1000.00	-1000	.00	-1000.00	-1000.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-100	00.00	-1000.00	-1000	.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lamallank									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			hio v Im	.1	Proito In	a1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						ני				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10000	7.00	10000.00		1.00					
BS-P 1.00 1.30 1.00 1.30 1.25 1.25 1.25 1.10 1.40 BS-T 1.00 1.20 1.00 1.20 1.15 1.15 1.15 1.10 1.30 BS-A 1.00 1.00 1.00 1.10 1.10 1.10 1.10 1.20 BS-T/A 1.00 1.10 1.00 1.12 1.12 1.12 1.10 1.25 γ- Teilsicherheitsbeiwert für G Ständige Lasten	Teilsicher	heitsbeiwe	rte (GEO) i	für NW-	-Verf. 3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ-				Ε	arphi	С	\mathbf{C}_{u}	R_a	R_b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BS-P	1.00	1.30	1.00	1.30	1.25	1.25	1.25	1.10	1.40
BS-T/A 1.00 1.10 1.00 1.10 1.12 1.12 1.12 1.10 1.25 $ \gamma \text{-} $ Teilsicherheitsbeiwert für $ \text{G} $ Ständige Lasten				1.00						
γ - Teilsicherheitsbeiwert für G Ständige Lasten	BS-A	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.10	1.20
G Ständige Lasten	BS-T/A	1.00	1.10	1.00	1.10	1.12	1.12	1.12	1.10	1.25
G Ständige Lasten	γ-	Teils	sicherheitsh	eiwert f	für					
· · · · · · · · · · · · · · · · · · ·										
Q verangerliche Lasten	Q									
W Wasserdruck										

Erdbeben

Reibungsbeiwert $tan(\varphi)$

E

 φ

Seite	3
1 (6.11	01 1
Lastfall	Standa

Programm DC-Böschung/Win Version 8.49

Bestimmung der Sicherheit nach Krey-Bishop

Gleitkreis mit Iteration des Mittelpunktes:

Startpunkt: $x_M = 0.50 \text{ m}, z_M = 5.50 \text{ m},$

 $\triangle x = 1.00 \text{ m}, \triangle z = 1.00 \text{ m},$

mit Iteration des Radius: \triangle R = 1.00 m ab R = 14.33 m

Lastfall Typ: BS-T

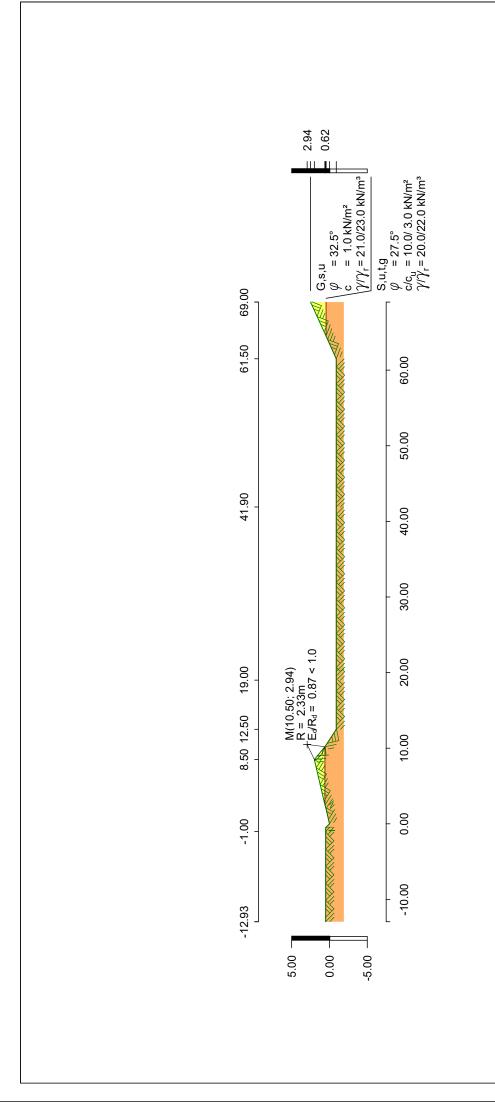
Gleitkörper von x = 8.38 bis 10.19 m

Gleitkreis: $x_M = 10.50 \text{ m}, z_M = 2.94 \text{ m}, R = 2.33 \text{ m}$

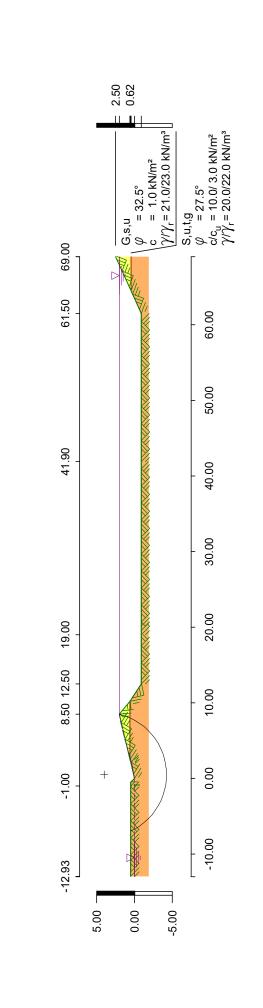
Bestimmung der Lamellen-Anteile

x_M	Breite	Eigen-	Auflast	Wasser-	arphi	С	V
	b	gewicht		auflast			
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[Grad]	$[kN/m^2]$	[Grad]
8.47	0.18	0.69	0.00	0.00	32.50	1.0	-60.59
8.65	0.18	1.33	0.00	0.00	32.50	1.0	-52.51
8.83	0.18	1.57	0.00	0.00	32.50	1.0	-45.71
9.02	0.18	1.65	0.00	0.00	32.50	1.0	-39.65
9.20	0.18	1.61	0.00	0.00	32.50	1.0	-34.09
9.38	0.18	1.48	0.00	0.00	32.50	1.0	-28.87
9.56	0.18	1.26	0.00	0.00	32.50	1.0	-23.90
9.74	0.18	0.98	0.00	0.00	32.50	1.0	-19.11
9.92	0.18	0.63	0.00	0.00	32.50	1.0	-14.47
10.10	0.18	0.22	0.00	0.00	32.50	1.0	-9.91
\mathbf{x}_{M}						R*T _i	R*G*
						·	sin(∜)
[m]						[kNm/m]	[kNm/m]
8.47						1.37	1.40
8.65						2.09	2.46
8.83						2.28	2.62
9.02						2.31	2.45
9.20						2.22	2.10
9.38						2.04	1.66
9.56						1.79	1.19
9.74						1.47	0.74
9.92						1.08	0.37
10.10						0.61	0.09

Einwirkungen $E_d = 15.07 \text{ kN}$ Widerstände $R_d = 17.26 \text{ kN}$


 $E_d/R_d = 0.87 < 1.0$

Summen:


*** Nachweis erfüllt ***

17.26

15.07

Seite	4
Lastfall	Standard
Maßstab	 1: 500

Seite	1	
System		
Maßstab	 1: 500	

	Seite	2	
Programm DC-Böschung/Win Version 8.49			_

Eingabedatei: C:\ProgramData\DC-Grundbaustatik\Daten\ 211025_Nabburg_Baderfeld_RRB_voll.dbb

Berechnung nach: (Eurocode 7) und DIN 1054:2010

Nachweis nach DIN 4084:2009

Berechnung mit Nachweisverfahren 3

Kombination mit Teilsicherheitsbeiwerten der Gruppen A2 + M2 + R3

Schichtdaten Innere Reibung cal φ' Kohäsion cal c' Kohäsion undrainiert cu Wichte Boden Wichte wassergesättigt	[Grad] [kN/m²] [kN/m²] [kN/m³]		G,s,u 32.50 1.0 0.0 21.0 23.0	S,u,t 27.5 10.0 3.0 20.0 22.0	0	
Wichte unter Auftrieb	[kN/m³]		11.0	10.0		
Geländeverlauf und Sch	ichten					
x [m]		-12.93	-1.00	-0.50	-0.47	0.00
		2.01	2.01	2.48	2.48	8.50
		10.20	12.50	19.00	20.14	41.90
		61.50	64.52	69.00		
z Gelände		0.50	0.50	0.50	0.47	0.00
		0.47	0.47	0.58	0.58	2.00
		0.62	-0.90	-0.90	-0.90	-0.90
		-0.90	0.47	2.50		
z Schicht	G,s,u	0.50	0.50	0.50	0.47	0.00
		0.47	0.47	0.58	0.58	0.61
		0.62	-0.90	-0.90	-0.90	-0.90
		-0.90	0.47	0.47		
z Schicht	S,u,t,g	-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
		-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
		-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
		-1000.00	-1000.00	-1000.00		

Verlauf der Sickerlinie

x [m]	z [m]
-13.00	0.00
0.00	0.00
8.50	2.00
69.00	2.00

Lamellenbreiten

Von x [m]	bis x [m]	Breite [m]
-10000.00	10000.00	1.00

Teilsicherheitsbeiwerte (GEO) für NW-Verf. 3

γ-	G	Q	W	Ε	φ	С	C_{u}	R_{a}	R_b
BS-P	1.00	1.30	1.00	1.30	1.25	1.25	1.25	1.10	1.40
BS-T	1.00	1.20	1.00	1.20	1.15	1.15	1.15	1.10	1.30
BS-A	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.10	1.20
BS-T/A	1.00	1.10	1.00	1.10	1.12	1.12	1.12	1.10	1.25

γ-	Teilsicherheitsbeiwert für
G	Ständige Lasten
Q	Veränderliche Lasten
W	Wasserdruck
E	Erdbeben
φ	Reibungsbeiwert $tan(\varphi)$

	Seite	3
Programm DC-Böschung/Win Version 8.49	Lastfall	Standaı

c Kohäsion c

c_u Kohäsion undräniert c_u

R_a Anker R_b Bauteile

Bestimmung der Sicherheit nach Krey-Bishop

Gleitkreis mit Iteration des Mittelpunktes: Startpunkt: $x_M = 0.50 \text{ m}, z_M = 4.00 \text{ m},$

 $\triangle x = 1.00 \text{ m}, \triangle z = 1.00 \text{ m},$

mit Iteration des Radius: \triangle R = 1.00 m ab R = 8.25 m

Lastfall Typ: BS-T

Gleitkörper von x = -1.61 bis 7.12 m

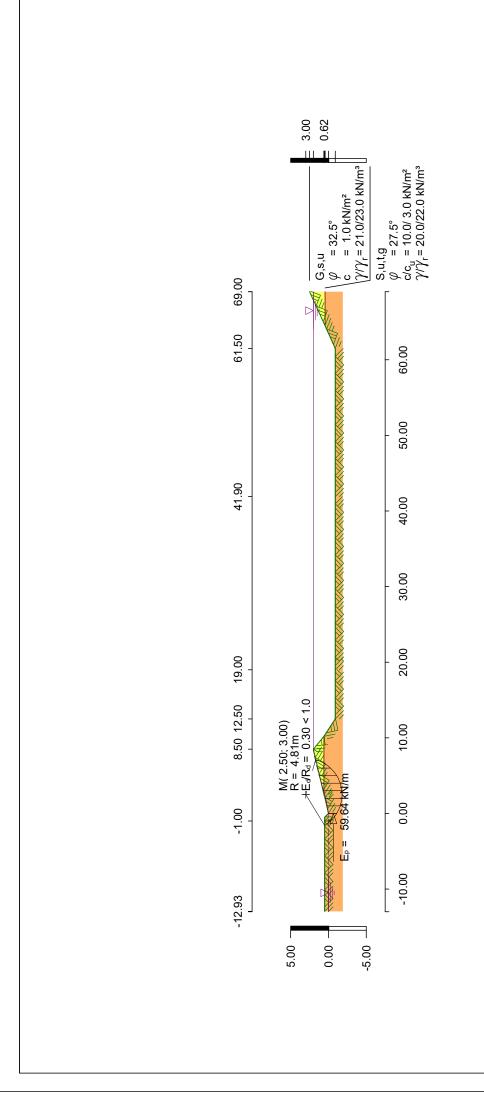
Gleitkreis: $x_M = 2.50 \text{ m}, z_M = 3.00 \text{ m}, R = 4.81 \text{ m}$

Bestimmung der Lamellen-Anteile

x_M	Breite	Eigen-	Auflast	Wasser-	arphi	С	v
	b	gewicht		auflast			
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[Grad]	[kN/m²]	[Grad]
0.38	0.74	20.62	0.00	0.00	27.50	10.0	-26.22
1.18	0.87	33.03	0.00	0.00	27.50	10.0	-15.90
2.06	0.87	39.53	0.00	0.00	27.50	10.0	-5.30
2.93	0.87	43.18	0.00	0.00	27.50	10.0	5.11
3.80	0.87	44.12	0.00	0.00	27.50	10.0	15.70
4.67	0.87	41.90	0.00	0.00	27.50	10.0	26.89
5.55	0.87	35.58	0.00	0.00	27.50	10.0	39.33
6.42	0.87	22.40	0.00	0.00	27.50	10.0	54.62
6.99	0.27	1.92	0.00	0.00	32.50	1.0	69.02

x_M	Porenwasser-	Porenwasser-	R*T _i	R*G*
	druck u	überdruck ∆u		sin(୬)
[m]	[kN/m²]	[kN/m²]	[kNm/m]	[kNm/m]
0.38	13.52	0.00	64.65	-43.81
1.18	17.45	0.00	81.44	-43.51
2.06	20.88	0.00	84.31	-17.57
2.93	23.41	0.00	85.30	18.50
3.80	24.72	0.00	85.56	57.43
4.67	24.38	0.00	85.26	91.10
5.55	21.62	0.00	84.63	108.45
6.42	14.83	0.00	82.53	87.81
6.99	5.46	0.00	4.60	8.63

Summen: 658.27 267.04


Ansatz des Erdwiderstands bei x = 0.01 m:

Kraft E _⊳	Hebelarm	Wasserdruck W	Hebelarm	$M_{rückh}$	$M_{abtr.}$
[kN/m]	[m]	[kN/m]	[m]	[kNm/m]	[kNm/m]
59.64	3.65	0.00	0.00	217.51	0.00

Einwirkungen $E_d = 267.04 \text{ kN}$ Widerstände $R_d = 875.77 \text{ kN}$

 $E_d/R_d = 0.30 < 1.0$

*** Nachweis erfüllt ***

Seite	4
Lastfall	Standard
Maßstab	 1: 500